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A problem concerning the shockless “cold” compression of one-dimensional layers (planar, cylindrical and 

spherical) of a barotropic gas which requires a minimum amount of external energy in order to attain the 

specified degree of compression is formulated and solved. The initial state of gas is assumed to be 

homogeneous. In the planar case, an exact solution of the problem is obtained (laws for the optimal control 

of the motion of the piston are constructed) using Pontryagin’s maximum principle while, in the cylindrical 

and spherical cases, an approximate solution is obtained using the method of characteristic series. In the 

planar case, the magnitude of the energy gain is found compared with the traditional self-similar method of 

compression which had turned out to be quite appreciable and to depend on the equation of state. The 

results of numerical calculations are presented for the cylindrical case which was studied in greater detail. 

These calculations were carried out on the basis of the analytically constructed law for the optimal control of 

the motion of the piston with a single point of control commutation. A brief account of some of the results is 

given in [l]. 

IT HAD already been shown by Rayleigh and Hugoniot [2] that, by using a class of self-similar 
Riemann waves, it is possible, in the isentropic compression of a planar layer of a polytropic gas, to 
obtain a gas density which may be as large as desired. The possibility of the unlimited compression 
of a gaseous cylinder and a gaseous sphere has been established [3, 41 using classes of self-similar 
cylindrical and spherical flows which have been studied in detail [5] (in the case of problems of the 
displacement of a gas). It was pointed out in [3, 41 that the processes involved in the shockless 
compression of a gas are favourable energy-wise since they do not lead to a large increase in the 
kinetic energy and to the pronounced heating of the substance which is observed during shock 
compression. Such processes can therefore play an important role in the realization of laser 
thermonuclear synthesis when the compression of the targets is achieved using a special form of 
shaped-pulse laser radiation. 

A more general problem (compared with [24]) of the shockless compression of layers of a 
barotropic gas by means of a piston up to an arbitrary final average density with the minimum 
energy requirements for the motion of the piston is considered below. In the case of a cylindrical or 
spherical symmetry of the layer, there is not longer a solution of this problem in the class of 
self-similar motions and wide classes of flows have to be invoked. 

1. At the initial instant of time t = 0, let a homogeneous layer of an immobile gas p = p. , p = p. , 
u = 0 with the equation of state p = p(p) (the conventional notation) be located between the 
surfaces 5 = Rf and .$ = R. , R,, > R p0, where 5 is a radial or planar coordinate. We shall assume 
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that the units of measurements are chosen such that co2 = p’ (po) = 1, where cg is the initial velocity 
of sound, and the compression process is realized in the time interval t E [0, tk), where tk = R,) - R, 
corresponds to the time taken by the sonic perturbation to traverse the layer. The surface 5 = Rfacts 
as a fixed wall and 5 = Rc corresponds to the initial position of the piston R,. 

We shall seek the law of motion of the piston R,c = f(t)f(O) = Ro, f’(t) G 0 such that: 
1. f (tk) = Rk , R. > Rk > Rf, where Rk is a specified quantity which characterizes the degree of 

compression of the layer. 
2. When tE [0, tk), the flow of the gas is shockless. 
3. E(f(t,)), the work done by external forces in displacing the piston should be a minimum. 

2. Let us initially consider the planar case and assume the Rf> 0 and p(p) a cc;. The equations of 
the isentropic one-dimensional motions of the gas have the form 

Q + uug + p-‘p’ (p)pt = 0 pt + (up)5 + Np&’ = 0 (2.1) 

where the values N = 0, 1,2 correspond to the planar, cylindrical and spherical cases. 
It is clear that, in the planar case (N = 0), starting from t = 0 the weak disturbance from the piston 

propagates into the immobile gas at a single velocity while the perturbed flow between the weak 
disturbance and the piston is a travelling Riemann wave and is described by the relationships [2] 

P 

u+ s 
q-1 dp = 0, c2 = p’ (p) (2.2) 

P. 

6 = (u - c)t + Y (U) (2.3) 

with an arbitrary function q(u). 
Let us first find the law of motion of the piston R,” which ensures an unbounded shockless 

compression of the planar layer at the instant of time t = t k. By exactly the same reasoning [2] the 
function q(u), which ensures the intersection of all the rectilinear characteristics starting from the 
trajectory of the motion of the piston, that is, of the curve DCA at the point A (Rk, tk) of the 5, t 
plane (Fig. l), will correspond to such a law. Here, f’(O) = 0 since, if f’(0) ~0, a shock wave will 
immediately be formed in the flow. We shall assume that R,‘p = g(t), g(0) = p. on the piston and 
that the no-passage condition u = f’(t) is satisfied. 

The equations of the rectilinear characteristics passing through the point A have the form 

E - R, = (u - c)(t - tr) (2.4) 
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Hence, the function q(u) is 

Y (U) = Rf - (U - c)tr 

and, along the line of the piston, we obtain two relationships from (2.2) and (2.4) for finding the 
functions f(t) and g(t) 

R(f) 

f’ V) + s VP’ (g W) 4-t- 0) g’ ft) 68 = 0 
PI 

f(t) - Rf = (f’ (9 - lGnamt - tk) 
(2.5) 

By eliminating the function f(t) from relationships (2.5) and integrating the resulting differential 
equation for g(t), we find the following integral: 

~~ g (Cl (t - tr> = --Path: (2.6) 

from which the density of the gas g(t) on the piston is determined. 
By integrating the equation for f(t), we get 

f-$ 

f(t) = J-I, - t - PI& (t - tr) j s?F (2 + $i) f&r = f* (f) (2.7) 
k 

Here, the limit of the factor accompanying potk when t--, tk is equal to lim,,k[ -8-l (t)] = 0 since 
it follows from (2.6) that g(t)+ CO when t-+ tk. 

Hence, the dependence (2.7) determines the law of motion of the piston RF which ensures the 
unbounded compression of a planar layer of a barotropic gas at the instant t = tk. In the case of a 
polytropic gas with an equation of state p = a*p’ (y > 1 is the adiabatic index, a2 = y1 pol-y and 
p. = y1 pa, where p. and p. are the background values of the density and pressure), we obtain from 
(2.7) [2] that 

f V)= -&- (t - tk) + Rf + +& tk (I- -+--)2’(v+1’ (2.8) 

The energy required for the motion of the piston R, in the time interval [0, tk) is represented by 
the integral 

‘k 

E (f (tk)) = - 1 P @I (f’)) f’ (t) dt (2.9) 
0 

where the function 4 (f’) is defined implicitly by relationship (2.2) when u = f’(r). 
If we consider the problem of minimizing the functional (2.9) in the class of functions~(~) which 

satisfy the specified boundary condition f(0) = Ro, f(tk) = Rk then the linear function 
f(t) = (& - Ro) t/tk such thatf’(0) # 0 will be the solution of the standard variational problem which 
arises. Shockless compression accompanying such a motion of the piston R, is impossible and it is 
therefore necessary to restrict the class of permissible functions v = f’(t) E V in order to ensure that 
there are no shock waves. 

We shall next consider a class of equations of state for which the velocity of sound c is a 
nondecaying function of p. It then follows from (2.2) that, as ]U 1 on the piston increases, the 
magnitude of c(u) does not decrease and the slope of the characteristics (2.4), which is determined 
by the magnitude of 1 u -c I, also increases. In this case, the class of permissible controls V will 
consist of the functions v which satisfy the inequalities 
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(2.10) 

Let us prove analytically in the case of a polytropic gas that, if the inequality 

F’ (t) < f’* (t) = ~[1_(1_~)-(~-l)‘~~+l~]=~(t)~O (2.11) 

is satisfied in a certain interval of time [T_, T+] (Fig. 1) from the interval [0, tk) in the case of a 
control law 5 = F(t) with a piston RF, then a gradient catastrophe necessarily occurs in the flow of a 
gas which is determined by the motion RF at a certain instant t< tk and a shock wave occurs. 

We will write the equation of the rectilinear characteristic (2.4) which starts out from the piston 
RF when t = to in the form 

F’ w) 0 - k4 + F (44 (2.12) 

We will find the envelope of the family of characteristics which depend on the parameter to from 
the relationship which is obtained by differentiating (2.12) with respect to to 

t=t,- + (I- + F’ (to,) (F” (to))-’ (2.13) 

(when the acceleration of the piston RF does not vanish). Equations (2.12) and (2.13) define the 
envelope. We note that, in the case of the piston Rto, all of the characteristics intersect at t = tk . 

As to, let us consider the instant T* (Fig. 1) at which the relationships 

f*’ (T*) = F’ (T,) < 0, F" (T,) < fe.” W -C 0 

are satisfied, that is, at the instant 7* the velocities of the pistons Rto and RF were equalized while the 
absolute value of the acceleration of the piston RF was greater than the analogous value in the case 
of the piston RF. It is clear that, by virtue of (2.11), such an instant where T* <T_ is found. Then, by 
calculating, at t = T* , the difference in the times At = tk - tF which correspond to the occurrence of a 
gradient catastrophe, we get 

that is, tF< tk and a shock wave appears in the flow of the gas caused by the motion of the piston RF 
up to the instant tk . 

In the general case of barotropic gas, subject to the assumption which has been made regarding 
the monotonicity of the increase in the velocity of sound, simpler geometric considerations also 
confirm that a shock wave is formed in the gas flow at t< tk when the left-hand side of inequality 
(2.10) breaks down. 

3. The problem of minimizing the functional (2.9) in the class of functions f(t) which satisfy the 
specified boundary conditions and the constraints (2.10) is a standard problem of optimal control 
[6]. We shall use Pontryagin’s maximum principle to solve it. By putting p (q (f’) ) = P(v) in (2.9), 
we get that the optimal control v(t) is found from the condition for a minimum of the function 

min G (v, h), G (v, h) = --P (u) u - AU (3.1) 
UEV 
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FIG. 2. 

where A < -pc< 0 is a parameter which is found from the condition that the piston R, passes through 
the point t=tk, (=&. The qualitative form of the dependence G(v, A) at a fixed 
h(G,(O, A) = -p”-X>O, G(--03, A) = 03) is shown in Fig. 2. 

We note that, when A > -po, it is impossible to find a trajectory of the motion of the piston R, 
which passes through the points D and B (Fig. 1). 

It follows from the form of G( Y, A) that the optimal control v is formed by continuous splicing of 
two functions: the function v is initially identical to t(t) from (2.7) until the function G reaches a 
minimum at v = v* such that, at the instant of time t = th (point C in Fig. 1 corresponds to this), 
V = 5 (t,) and subsequently, at t* < t + -= tk, the piston moves at a constant velocity v = v*, that is, the 
l&e CB is a straight line. Along CB, the velocity and density of the gas are constant and these values 
are also kept constant at all points of the triangle ABC such that the final state of the gas is 
homogeneous at t = tk on the segment AB (apart from at point A, where p = ro, u = 0). Hence, 
uniform compression of the gas up to the specified density is achieved after the instant t , 

In the case of a polytropic gas, the instant t* is calculated in an exceedingly simple m*anner from 
geometric considerations so that the final law of optimal control has the form 

V, (t) = 5 (t) 0 < t < t, = tk (1 - s(V+lf’Z) 

uo(t) = 5 (t*) = -&- (1 - s-(Y-1)/2), s = 4--f 
(3.2) 

Ro-RRf ’ t, <t\< tk 

where s is the specified degree of compression of the planar layer. 
Let us now establish in the case of a polytropic gas that the sufficient conditions for a minimum of 

the functional E(f) (2.9) to exist are satisfied when there are small perturbations h(t) of the optimal 
control law vc(t) from (3.2). In the given case the functional E(f) has the form 

E(f) = J (f’) = - pJ( I f,)2w-l) I! & y ; 1 

0 

Let the perturbation h(t) of the law (3.2) be such that the conditions 

5 (t) < 00 (t) + h’ (t)t h @k) = h (0) = 0 

h’ (t) 2 when 0 \< t < t,. 

Then, using standard procedures [6], we get 

tk 

A = 1 (u. + h’) - J (uo) = p. ‘s’ hv,‘R (q,) dt + 5 0 (h2) dt 

0 0 

(3.3) 

uo’ = - (V_t21,1, (I- +_)-J+Q <o 

R(v,) =y(l_~~o)aic~~1)(_2+~Uo)<0 



642 A. F. SIDOROV 

It is clear that, for sufficiently small h’(t), we have A > 0 and the conditions for a local minimum to 
exist are satisfied. 

The energy of the piston J(uO) goes into increasing the internal energy AE and the kinetic energy 
Ao of the gas layer 

As = +!_$ ($-Y _ I), A0 = $& (sGY)/2 - 1)2 (3.4) 

It follows from (3.4) that, at low compression, when s+ 1, the ratio A&/Am increases in an 
unbounded manner, that is, most of the piston energy goes into increasing the internal energy while, 
at high compression when s-+ 0, this ratio tends to a finite limit. 

The estimation of the gain in energy E0 which is expended in the case of the optimal law of motion 
of the piston (3.2) compared with traditional control methods and, in particular, compared with the 
energy Es of the fastest possible compression which is expended at the instant t, (Fig. 1) when the 
trajectory of the piston (2.8) arrives at the point E = Rk . 

On carrying out the necessary calculations, we get 

E, = poRo 
(v - I? 

(p-(Y-W - 1)[(3y_l) p-WlVZ_ y_ I] 

E = (Y+l)pORO 
s 

(v - II2 
(1 - a-w-lMv+l))z 

(3.5) 

P= +- (y + 1 - 2s(v-l)9 s = * ~Z/(?+l, - &-A, hE(O,l) (3.6) 

It follows from (3.5) and (3.6) that, in the case of weak compression when s+ 1 (A+ 1, CL--+ 1). 
EC,+ 0, E,T+O, after some simplifications we get 

r- 2$L (1 - s-(v--1)/2)-l 

for the ratio q = Es/E,. 
In the case of high compression (s - 0) 

rl _*(*)p(v-l) 

(3.7) 

(3.8) 

Hence, the gain in the case of weak compression s-0 is very large (q+ a) while, in the case of 
high compression, it is finite and depends on y. In particular, when y = 3, q--64/11. By formally 
directing y to infinity, we obtain from (3.8) that n+ge4. Whereas a large gain is natural in the first 
case since, with rapid compression, only a small mass of the gas is brought into motion, in the case of 
high compressions, a situation where the gain is finite, but nevertheless may be quite appreciable, is 
not expected since, when s-0, the instant t,+ tk and, consequently, a gain in energy is attained by 
a uniform compression when t> t* with a very high velocity. We note that, in the general case, q is a 
monotonic function of s. 

The curves q(s) when y = 1.1, 1.4, .5/3, 2 and 3 are shown in Fig. 3. 

Remark I. It would be tempting to achieve even greater gains by invoking some other more-general 
equations of state with a gradual increase in the pressure as a function of density. However, a number of 
calculations using relationships (2.6) and (2.7) and the optimality principle which has been formulated in the 



Shockless compression of a barotropic gas 643 

a a,5 1 

FIG. 3. 

case of equations of state with an exponential dependence of the pressure on the density showed that it was not 
possible to achieve a gain greater than $e”. 

Remark 2. When t - tk , a shock wave, with a constant velocity, starts to propagate from the rigid wall 5 = Rf 
until it encounters the piston R, at a certain instant of time T. It is clear that, up until this instant, it is 
advantageous to continue to move at a constant velocity u* for the purpose of achieving an even greater degree 
of compression with a low energy expenditure. 

4. Let us now consider the case of the compression of cylindrical and spherical layers of gas with a 
minimum expenditure of energy. Unlike the case of a planar layer, it is not possible to obtain an 
exact analytical solution of such problems. This is primarily due to the fact that the exact 
relationship between the velocity of the gas and the velocity of sound at the piston is unknown and 
this means that the functional E(f) cannot be written explicitly. Furthermore, the analytical 
solution of problems on the determination of the laws of motion of cylindrical and spherical pistons, 
which ensure the unbounded shockless compression of layers, is unknown even in the self-similar 
cases of the compression of a cylinder and a sphere [3,4]. 

On account of this, we shall next construct an approximate solution of the problem which has 
been formulated which rests on the following hypothesis: the velocity of sound and the velocity of 
the gas at the piston are related by the dependence (2.2), that is, one of the Riemann invariants 
keeps a constant value in the neighbourhood of the piston. Such a hypothesis is widely employed in 
the gas dynamics of one-dimensional flows [2] and frequently yields good quantitative results. In 
particular, it is clear that, at relatively small degrees of compression, such an approximation will be 
completely acceptable. Then, in the polytropic cylindrical case which we shall consider in greater 
detail, the functional E(f) can be written in the form 

W/W-l) 

E,(f) =-2np,5p -qL) fv dt, v = f’ 
0 

(4.1) 
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Here E, is the work required per unit length of the generatrix of the cylinder. 
We shall make use of the method of characteristic series [7-111 to construct a class of permissible 

controls V and to obtain an approximate determination of the flow in the region ACL). By analogy 
with the planar problem, we determine the coefficients of the series, for the case when the radii of 
the internal layer are nonzero, from the condition that all of the characteristics starting out from the 
line of the piston R, are focused at the point (tk, Rf). Here, if Rf f 0, the gas flow which arises will 
no longer be self-similar and dependent on the variable t(t-- &)-I. 

We will introduce a new unknown function I(u, t) (u is the velocity) such that [7]: 

c2 = fv-- (4.2) 

The system of equations (2.1) can then be reduced to a single Monzha-Ampere equation 

I’, VuJtt - V,f - rJ)“f i- iv (Y - 1) (rt - -$- u2 j (@r,, + F,) = 0 (4.3) 

It is assumed that IUU f0 so that the function u(& t) is implicitly defined by the second 
relationship of (4.2). The use of the variables u and t is convenient due to the fact that, in the 
neighbourhood of the point at which the characteristics are focused, the gradients of the gas 
dynamic quantities are large in the physical variables and the use of the variable u instead of 5 
removes this difficulty. The line u = 0, which corresponds to a weak break in AD (Fig. l), is a 
characteristic in the case of Eq. (4.3) (c = 1 along it). 

We will represent the solution of Eq. (4.3) in the region ACD (Fig. 1) by the characteristic series 

r - 5 U, (t) uk, a, = (y - 1)-l t, a, = R, - t 
k=o 

(4.4) 

The coefficients ak(t) of series (4.4) [7] are determined by the successive integration of first-order 
ordinary differential equations. In order that the characteristics should be focused at the point A 
and that the velocity at this point should not be indeterminate (it depends on the angle of inclination 
of a given characteristic with the axis at point A), it follows from the second relationship of (4.2) that 

a, (tk) = 0, k = 2, 3, . . . (4.5) 

Conditions (4.5) enable one to determine all of the arbitrary constants upon integrating the 
equations for ak (t), k 3 2. 

By calculating a2 (t) and a3(t) and taking the corresponding segment of the series (4.4), we obtain 
the approximate relationship 

E = R, - t - [I?, - t - RY”- (R, - t)“] (y + 1) IL + + x 

X I ~[19~+~~+4(~+~)lnR~] --J$&~o--t)++(~+i)~f--t 

- 15v4$27 Rf"(R,_ t)l:}uZ (4.6) 

In order to find the law of motion f(t) of the piston R approximately, we must put 5 = f(t) and 
u = f’(t) in (4.6). By integrating the resulting differential equation forf(t) with the initial condition 
f(0) = Ro, it is possible, in particular, to obtain the Taylor coefficients of the expansion for -a (t) 
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f’ (E) = rl 0) = k#l Qktk, q1 = - (y + 1)-l R," (Ro" - Ry) (4.7) 

The local convergence of series of the type (4.4) for small u and t has been established [ll]. 
However, a number of applications of series (4.4), in particular, in the case of problems concerned 
with the efflux of a gas into a vacuum [12] has shown that the domain of their convergence (which is 
at the same time often very very rapid) may be quite large and also include, for example, the 
boundary adjacent to the vacuum. In order to obtain solutions in the case of high velocities in the 
part of the domain ACD which is adjacent to the piston, it is advisable to employ the characteristic 
series directly in the physical variables 5, t for functions u and c of the form 

c = iii b,(t) (E + t-R,)" 
k=n 

(4.8) 

Here, splicing of series of series of the type of (4.4) with series of the type of (4.8) can be 
employed as well as various methods for speeding up their convergence such as, for example, by 
using Pad6 approximations [12]. We shall therefore assume that the function y(t) (q(t) ~0, 
y(O) = 0), which accomplishes the motions of the piston with the focusing of all of the characteris- 
tics at point A, is approximately determined. We note that, in the case where Rf = 0 when a cylinder 
or a sphere is compressed, a representation of n (t) of the form of (4.7) which is analytic with respect 
to t is impossible. Terms with logarithmic singularities appear in the expansions and q(t) can be 
found either numerically [7] or by the use of the technique of expansions from [13]. 

5. Let us now consider the problem of constructing the optimal control v(t) in the class of 
permissible controls V{q(t) =S v(t) s 0} which minimizes the functional (4.1). Using Pontryagin’s 
maximum principle, the problem reduces to minimizing the function 

min 
1‘EV 

{- Znp,vf(l--- J$- ~~'(Y-l}-q(~) v} (5.1) 

with the condition (the Euler condition) 

Q’ (6 = - 2Jq4p 
i 

I- 2if.L uy-) > 0 

and the supplementary conditions of traversality on q(t), an auxiliary function, such that the 
trajectory of the piston passes through the point (Rk , tk). 

The nature of the change in the function being minimized, W(V, t) in (5.1) is the same as that in 
the case of the function shown in Fig. 2. Here 

IV, (v, 0) = -2np0R, - h, > 0, q (0) = h, < 0 

q ctk) = -h,<O 

Hence, as in the planar case, up to a certain instant t* which is determined from the conditions 

_2np,?(t,)(l_~u*)(ytl)‘(I‘-1) (1-J+?*)-q(t*) = 0 (5.2) 

the optimal control is identical to the law q(t) when the characteristics are focused at point A 
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and the function W is a minimum when u = v,_ . 

t < t, 

q(t)) zv’(v-l) dt + AI 

When t> t* , we get the following system oiequations which determine the optimal control 

( 

q’=-22np,v I-J&J 
( ) 

ZV/(V-1) ) f’==v 

By eliminating q(t) from (5.5) using (5.4), we obtain the relationship 

-23 l- 
( 

Gv) = fv~(2_3+,) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Next, by eliminating the functionf(t) from (5.6) using (5.5), we get a second-order equation for 
v(t), the general integral of which we write in the form (C, and C2 are arbitrary constants) 

Here, the relationships 

ClU2f (1 -f ; I u)(y+l)‘(v-l) = - 1 

R, = f (t*) > 0, V* = v (t*) < 0, vk = L’ ctk) 

Cltk + c, = A (v,), Cl& + c, = A (‘*) = ’ 

cl (tk - t*) = n kk) < O, 
vk2 (I - ‘/a (y - 1) v~)(Y+~)/(-) R, 

v*a (1 - ya (v _ 1) ,*)(v+1)/(Y-1) = R, > I 

are satisfied. 
It can be shown that an instant when there is a change over t* E (0, t+) is always found. 
Actually, we get an equation for finding t* from (5.7)-(5.10) 

(Y+l)/(v-1) 

F (ts) = veaf (t*) 
i 

Y--l 1 - 2 v* ! 
tk -t, 

+ A (‘k (&)) = ’ 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

where the function I is implicitly determined from (5.10). 
It follows from (5.10) that 1 vk (t,) I> V* 1, that is A(Q (t,) ) < 0 always. When the values of t* are close to zero, 

u* and vk(t,) are also close to zero. For such t* , it follows from (5.7) that 

-’ @k (h)) - - -g (“i3 (t*) - 53) _ _ 3 “;3 [iti”-*],, 

But from Eq. (5.11) we get 

F (G - v.~R, + o (Q) > o 
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F (&I - v*‘R, + 0 (v*“) > 0 

On the other hand, when t*+ t+ - 0 (Fig. l), we shall have 

u* * 11 (t+L A (WC (Q) -t -0, tic - t, > 0 

and we therefore get from (5.11) that F(tJ + - 00. F(t*) is a continuous function oft* and, consequently, a root 
of F(t*) is always found in the interval (0, t+). 

Finally, we write the law of optimal control when C* s t < tk in parametric form as 

t = 4-2 (I _ 2-g p)-(v+l)‘(v-l) ) p E [v*, pk] 

t = - A 5 p-4 (2 _ 2x+ p) (1 __ + qv/(v-l) dp + t* 

(5.12) 

“.V 

where the constants t* , A and l.& are determined from the condition that points B and D are 
traversed by the piston and lo, is a parameter. 

It is important to point out that the law of optimal control (5.12) is universal and independent of 
the actual form of the function q(t) by means of which the control of the initial stage in the motion 
of the piston is realized according to Eq. (5.3) prior to the instant of change over t = t . 

Calculations of the optimal control law using the formulae constructed in Sets 3 and*4 are shown 
in Fig. 4 in the case of the compression of a cylindrical layer (Rr = 0.4, Ra = 1) of a gas with y = 1.4. 
It was found that the final segment CB of the piston trajectory, calculated using (5.12), is practically 
linear and, here, t* = 0.361 and R* = 0.918. A calculation of the flow field in the curvilinear triangle 
ABC (or directly over the whole of the trangle ABD) can be carried out by the method of 
characteristics, for example. In this case, it is necessary to solve a Cauchy problem with approximate 
data on a known curvilinear characteristic DCA (or DA) and with no passage conditions on a known 
trajectory of the piston CB (after points of change over of the control) or BCD. 

In the spherical case, arguments can be used which are completely analogous to the case of axial 
symmetry. Instead of the functional (4.1) for the energy of the piston E,(f), we shall have 

E,(f)= -4np0i (l-T U)2V’(V-1)pVdt Y---l 

b 
The problem of the optimal control of the piston can also be completely solved here in 

0.2 Rf 0,s 0,6 D -’ 

FIG. 4. 
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quadratures although the control law will differ substantially from (5.3), (5.12). Proof of the 
existence of a control changeover point t* is also far more difficult. The final formulae for the 
optimal control laws in the spherical case are presented in [l]. 
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